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The Effect of Covariance Estimator Error on Cosmological Parameter Constraints
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Extracting parameter constraints from cosmological observations requires accurate determination
of the covariance matrix for use in the likelihood function. We show here that uncertainties in
the elements of the covariance matrix propagate directly to increased uncertainties in cosmological
parameters. When the covariance matrix is determined by simulations, the resulting variance of the
each parameter increases by a factor of order 1 + Nb/Ns where Nb is the number of bands in the
measurement and Ns is the number of simulations.

I. INTRODUCTION

Upcoming galaxy surveys [1–5] aim to measure cosmo-
logical parameters at the percent level. Achieving this
lofty goal will require overcoming a number of well-known
theoretical systematics: bias in translating the matter
distribution to the galaxy distribution [6, 7], uncertain-
ties in the predictions for the dark matter spectrum [8, 9],
baryonic contamination of the power spectrum in weak
lensing [10, 11], outliers in photometric redshifts [12], ac-
curate predictions of the halo mass function [13], and
many others.

All of these are tied to making accurate predictions
for the cosmological observable, be it cluster abundance,
weak lensing power spectrum, or the position of the Bary-
onic Acoustic Oscillation peaks. Here we focus on the
effect of uncertainty not in the observable but in the co-
variance matrix of the observable, an essential ingredient
in transforming the predictions and observations into pa-
rameter constraints. For simplicity throughout, we focus
on the case when the likelihood is Gaussian so parameter
constraints are obtained by minimizing

χ2(p) =

Nb∑
i,j=1

(
xdi − xi(p)

)
C−1
ij

(
xdj − xj(p)

)
(1)

where p is the set of parameters; xdi is the data collected
in Nb bands (for example, the power spectrum of weak
lensing at various multipole moments and redshifts or the
cluster abundance in mass and redshift bins); xi(p) is the
set of predictions for these measurements which depend
on the parameters; and C is the covariance matrix. We
assume here that C is independent of p and therefore do
not include the ln |C| normalization term in Eq. (1).

In this language, most of the work about systematics
to date has been directed at obtaining accurate predic-
tions for the xi(p), while here we focus on the effect of
mis-estimating the covariance matrix C. Previous work
on covariance errors focused on the bias in the inverse
covariance estimate [14] and uncertainties in parameter
errors [15]. Specifically, Ref. [14] showed that a statis-
tical error in the covariance matrix estimator leads to a

multiplicative bias in the inverse covariance, or precision,
matrix. This bias can be easily corrected with by multi-
plying the precision matrix estimator with a known factor
depending on the number of samples used to estimate the
sample covariance. Ref. [15] identified a separate uncer-
tainty in the covariance matrix (and precision matrix)
similar to the result derived here, but expanded only to
linear order in the sample covariance error. At linear or-
der, Ref. [15] showed that the inferred model parameter
cosntraints cannot be known precisely due to the error
in the covariance. Ref. [16] also derive a result similar
to ours (their Appendix A), but again including only the
first term in a Taylor expansion in the covariance esti-
mator error. Ref. [16] differ from Ref. [15] in finding an
increase in the inferred parameter errors in addition to
uncertainty in those errors. But Ref. [16] disagrees with
this work in the size of the increase in the parameter
errors.

Here we derive an expression for the additional vari-
ance of estimators of parameters due to the uncertain-
ties in the covariance matrix, expanded consistently to
quadratic order in the precision matrix error. Unlike
Ref. [15], but similar to Ref. [16] the higher order er-
ror term we consider leads to an increase in the inferred
parameter errors. We then focus on the case when the
covariance matrix is estimated from simulations and dub
the additional uncertainty covariance estimator error.
Covariance estimator error is straightforward to compute
when the measurements x are Gaussian distributed, the
dependence of the covariance on cosmology is neglected,
and the sample covariance estimator is used. Then, the
covariance estimator error enhances the variance of ev-
ery parameter by a factor of order (1 +Nb/Ns) with Ns
the number of simulations used for the estimate. We go
beyond the Gaussian case with the example of the weak
lensing power spectrum, where we use existing simula-
tions to compute the covariance estimator error. The
degradation is very similar to the Gaussian case. We
conclude by tabulating the covariance estimator error for
existing surveys.

ar
X

iv
:1

30
4.

25
93

v2
  [

as
tr

o-
ph

.C
O

] 
 1

3 
Se

p 
20

13
FERMILAB-PUB-13-094-A-T



2

II. SIMPLE EXAMPLE

Suppose the set of measurements xdi each is designed
to measure a single parameter x, and consider the case
when the covariance matrix is diagonal, so Cij = δijσ

2
i .

Then, the inverse of the covariance matrix Ψ ≡ C−1 is
also diagonal with elements Ψi = σ−2

i . In this simple
case, we need to minimize

χ2(x) =
∑
i

(xdi − x)2Ψi; (2)

in so doing, we arrive at an estimate for x:

x̂ =

∑
i x

d
i Ψi∑

i Ψi
. (3)

The uncertainty on this estimate can be obtained by com-
puting 〈(x̂− x)2〉, which leads to

∆x2 =

∑
ij ΨiΨj〈xdi xdj 〉

[
∑
i Ψi]2

− x2. (4)

The angular brackets around xdi x
d
j refer to an average

over the distribution from which the xdi are drawn. This
distribution is assumed to be Gaussian with mean x and
variance Ct, where t indicates this is the true variance,
not necessarily equal to the covariance C (or its inverse
Ψ) used to estimate x. Therefore, the variance of our
estimator is

∆x2 =

∑
i C

t
iΨ

2
i

[
∑
i Ψi]2

. (5)

If we had access to the true covariance matrix, then CtiΨi

would be equal to unity and the sum in the numerator
would be simply equal to that in the denominator, leaving
the variance on our estimator to be ∆x2 = 1/

∑
i Ψi,

which, in the limit of equal errors on each of the Nb
measurements, reduces to the standard σ2/Nb.

Let’s consider though the impact of not knowing ex-
actly what the covariance matrix is. Write

Ψi = Ψt
i + ∆Ψi. (6)

Then the error on x is

∆x2 =
1[∑

j(Ψ
t
j + ∆Ψj)

]2 ∑
i

Cti
[
Ψt
i + ∆Ψi

]2
. (7)

Taylor expanding leads to

∆x2 =
1∑
i Ψt

i

+ new terms. (8)

The first set of these new terms are linear in ∆Ψ. These
lead to fluctuations in the error, meaning that the error
we assign to our estimator will be wrong [15]. However,
∆Ψ is just as likely to fluctuate up as it is down, so the

linear terms do not lead to a systematic bias on the er-
ror, only an uncertainty on the error. The second set of
terms is quadratic in ∆Ψ, and this set is more pernicious
as it leads to a larger error in the estimator of x. That
is, the estimated value of x will be drawn from a distri-
bution with a systematically larger variance than if the
covariance matrix were known exactly.

Let’s compute this error in our simple model. The
second order terms are

∆x2

∣∣∣∣∣
second order

= −
(
∑
i ∆Ψi)

2

[
∑
i Ψi]

3 +

∑
i C

t
i∆Ψ2

i

[
∑
i Ψi]

2 (9)

Suppose the fluctuations in the covariance matrix are
such that [15]

〈∆Ψi∆Ψj〉 = αδijΨ
2
i . (10)

Then, the first term in Eq. (9) will be of order N−2
b . The

second on the other hand is of order N−1
b so it dominates

and we are left with

∆x2 =
1 + α∑
i Ψi

. (11)

If the uncertainty in the covariance matrix is driven by
a finite number of simulations Ns, then we will see that
α ' 1/Ns. We call the new term covariance estimator
error, and it simply increases the errors on our estimate
of x. Although one can drive this error down by run-
ning many simulations, the number of (expensive) simu-
lations required in the era of percent level measurements
is apparently greater than a hundred, difficult but man-
ageable. Unfortunately, this very simple case of diagonal
errors does not capture the full danger of the situation.
In the more realistic case that the covariance matrix is
not diagonal, α scales as Nb/Ns, so if there are measure-
ments in a large number of bands, it will become harder
and harder to reduce the covariance error.

III. COVARIANCE ERROR IN THE GENERAL
CASE

We now generalize this treatment in three ways: First,
we allow the covariance matrix to have off-diagonal ele-
ments, so Ψij = C−1

ij is no longer just a diagonal matrix.
Second, we allow for more than one parameter; instead of
x, we envision fitting for a full set of parameters, pα. Fi-
nally, the measurements are likely not direct estimates of
the parameters. If we call the data in Nb bands xdi , then
we want to extract values of the cosmological parameters
pα from these measurements. The theoretical predictions
for these measurements, call them xi depend on the pa-
rameters: xi = xi(pα), usually in some complicated way.
For simplicity, we shift all parameters so the true values
are equal to 0. Then the predictions xi(p = 0) are equal
to the true values xti. The measured values will not be
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exactly equal to xt, but we expect the mean over many
realizations to equal to the true set:

〈xdi 〉 = xti (12)

and the spread is given by the covariance matrix

Ctij ≡ 〈(xdi − xti)(xdj − xtj)〉. (13)

where again superscript t denotes the true value. We will
extract the best fit values of the parameters by minimiz-
ing Eq. (1). Note again that the covariance matrix here
is not equal to the true one; this is the effect we want to
explore: what happens to our parameter extraction when
the covariance matrix is wrong?

Let’s decompose the χ2 into two pieces:

χ2(p) = χ2
0(p) + ∆χ2(p) (14)

where

χ2
0 ≡

∑
ij

(xdi − xi(p))(Ct)−1
ij (xdj − xj(p)) (15)

and the term due to the uncertainty in the covariance
matrix is

∆χ2 ≡
∑
ij

(xdi − xi(p))∆Ψij(x
d
j − xj(p)) (16)

where

∆Ψij ≡ C−1
ij − (Ct)−1

ij . (17)

Both χ2
0 and ∆χ2 are functions of p, and we can Taylor

expand both around p = 0. Apart from an irrelevant
constant, the standard piece is

χ2
0(p) ' −2

∑
ij

∂xi
∂pα

(Ct)−1
ij (xdj − xtj)pα + Fαβpαpβ (18)

where

Fαβ ≡
1

2

∂χ2
0

∂pα∂pβ

'
∑
ij

∂xi
∂pα

(Ct)−1
ij

∂xj
∂pβ

. (19)

The approximate equality on the second line follows since
operating with the derivative twice on xt leaves a factor
of xdi − xi, which averages to zero. Before turning to the
effects of the new piece, it is worth recalling the derivation
for the mean and variance of the estimator for pα using
the standard terms. Minimizing the Taylor expanded χ2

0

with respect to pα leads to the estimator

p̂α = F−1
αβ

∑
ij

∂xi
∂pβ

(Ct)−1
ij (xdj − xtj). (20)

Since 〈(xdj − xj)〉 = 0, the mean of this estimator is zero,
equal to the true value, so the estimator is unbiased. The

expected variance is obtained by squaring Eq. (20) and
using the fact that 〈(xdj − xtj)(xdj − xtj)〉 = Ctjj′ :

〈p̂αp̂α′〉 = F−1
αβ F

−1
α′β′

∑
ij

∂xi
∂pβ

(Ct)−1
ij

∂xj
∂pβ′

= F−1
αα′ (21)

where the second equality follows from recognizing the
sum over i, j as the definition of F and then setting
F−1F = I. So F−1 is the projected covariance matrix
on the parameters if C is known exactly.

To account for the effect of the uncertainty in the co-
variance matrix, we now Taylor expand ∆χ2 in Eq. (14):

∆χ2 ' −2
∑
ij

∂xi
∂pα

∆Ψij(x
d
j − xtj)pα + ∆Fαβpαpβ (22)

with

∆Fαβ ≡
∑
ij

∂xi
∂pα

∆Ψij
∂xj
∂pβ

. (23)

The changes to χ2 translate into a new estimator for the
parameters:

p̂α = [F + ∆F ]
−1
αα′

∂xi
∂pα′

[
Ψt + ∆Ψ

]
ij

(
xdj − xtj

)
. (24)

Just as in the toy model of §II, we can expand this es-
timator in powers of ∆Ψ, and – subject to the caveats
mentioned below – the estimator will remain unbiased
but its variance will increase.

Although we are interested in the terms second order
in ∆Ψ as these lead to larger errors on the parameters,
it is worth pausing to comment here on two situations
where the linear terms could lead to a bias: (i) when the
covariance matrix depends on the parameters and this
dependence is ignored by fixing C and (ii) when the fluc-
tuations in ∆Ψ are correlated with fluctuations in the
data. To illustrate consider the simple situation where
the elements of the inverse covariance matrix are mono-
tonically decreasing functions of p (e.g., in the diagonal
case, when p is the amplitude, the cosmic variance will be
larger when p increases and therefore elements of the in-
verse covariance matrix will be smaller when p is greater
than zero). Then, the assumed fixed value of Ψ will be
less than the true value when p < 0 and greater than the
true value when p > 0; equivalently ∆Ψ will start neg-
ative and turn positive as p passes through zero. If the
fluctuations in ∆Ψ are uncorrelated with fluctuations in
the data, then the first term in Eq. (22) has mean zero.
The second will be negative when p < 0 and positive
when p > 0. This will then mistakenly favor regions of
parameter space with p < 0. A full understanding of the
bias induced by neglecting the parameter dependence of
the covariance matrix is beyond the scope of this paper
(in particular, the determinant in the prefactor of the
likelihood also needs to be considered) [17], but this sim-
ple example makes some of the dangers explicit. The
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second potential bias occurs when 〈∆Ψ(xd− xt)〉 is non-
zero. This happens most obviously when the data itself
is used to generate the covariance matrix. In that case,
upwards fluctuations in the data would lead to down-
wards fluctuations in ∆Ψ, so – taking into account the
overall minus sign – the coefficient of the linear term in
Eq. (22) would be positive. This change will increase
the estimated value of p. If the fluctuation in the data
was negative, there would be a positive fluctuation in
∆Ψ, again leading to a positive linear coefficient in ∆χ2.
Again, the bias would push to larger values of p. The
conclusion is that a correlation between the data and the
covariance matrix may induce a parameter bias. In the
simple case where the fluctuations in the covariance ma-
trix are positive correlated with fluctuations in the data
and the derivative with respect to the parameters are also
monotonically increasing, the parameters will be biased
high.

We now isolate terms quadratic in ∆Ψ, as these lead
to larger errors in the estimator:

〈pαpβ〉
∣∣∣∣
s.o.

= F−1
αα′

[
∂xi
∂pα′

∂xi′

∂pβ′
Ctjj′(∆Ψ)ij(∆Ψ)i′j′

]
F−1
β′β

−
[
F−1∆FF−1∆FF−1

]
αβ
. (25)

Here the angular brackets denote the expectation over
the random values of xd drawn from the Gaussian dis-
tribution with mean x(p = 0) and variance Ct. We have
not (yet) computed the expectation of the fluctuations
in Ψ. Note that this expression reduces to Eq. (9) in the
1-parameter, diagonal covariance matrix case. To com-
plete the calculation, we need an expression for variance
of the fluctuations in ∆Ψ. Let us write these generically
as

〈∆Ψij∆Ψi′j′〉 = AΨijΨi′j′ +B(Ψii′Ψjj′ + Ψij′Ψji′).
(26)

Inserting this expression into Eq. (25) leads to

〈pαpβ〉
∣∣∣∣
s.o.

= BF−1
αβ (Nb −Np) (27)

where Np is the number of parameters in the fit and has
the restriction, Np < Nb. Eq. (27) is our main result,
demonstrating that uncertainty in the covariance matrix
propagates directly to a new source of uncertainty in the
estimate of parameters. This uncertainty is proportional
to F−1

αβ , which is equal to the parameter covariance in the
absence of this additional error. So covariance error does
not alter the shape of the constraints, but does inevitably
lead to looser constraints.

A simple way to think of this degradation is to re-
call that the parameter covariance matrix is inversely
proportional to fsky, the fraction of sky covered by a
survey. Covariance error enters in an identical way, so
if the new variance captured in Eq. (27) has coefficient
B(Nb−Np) equal to 0.1, for example, the result is equiv-
alent to throwing away 10% of the data set.

A. Gaussian limit

Taylor et al. [15] computed the values of A and B in
the Gaussian case (after correcting for the bias in the
inverse covariance estimator [14]):

A =
2

(Ns −Nb − 1)(Ns −Nb − 4)

B =
Ns −Nb − 2

(Ns −Nb − 1)(Ns −Nb − 4)
(28)

As in the toy model of §II, in the (common) limit that
Ns � Nb � Np, the variance is enhanced over the stan-
dard variance by a factor of (1 + Nb/Ns). This is our
main conclusion.

B. Weak Lensing Spectra

We can compute covariance estimator error for non-
guassian fields by using a subset of available simulations.
As an example, we use the suite of weak lensing simu-
lations from [18, 19], assuming that the true covariance
matrix is obtained from the scatter in all the simulations
(1000 total). Then using only some of the simulations,
we estimate ∆Ψ and therefore B by taking the difference
in Ψ from the smaller and full set of simulations. The
resulting estimate of B is shown in Figure 1 compared
with the Gaussian prediction. It is seen that, even for
this highly non-gaussian field, Eq. (28) gives a good fit
to the simulation samples. There are two reasons one
might expect B to exhibit a different dependence on Ns,
1) the two-point function of a Gaussian random field is
not itself Gaussian distributed, 2) nonlinear gravitational
evolution skews the statistics of the cosmological mass
density field away from Gaussian. However, because the
two-point function estimator is a sum of squares of the
density perturbations, the distribution of the estimator
may tend to a Gaussian as the number of modes in a
(wavenumber or angular) bin becomes large. Figure 1 is
consistent with this explanation.

C. Current surveys

Table I demonstrates the effect of simulation covari-
ance error for some recently published cosmological sur-
veys (which estimated covariance matrices from simula-
tion realizations rather than from the data). We find
that the degradation ranges from 5-15%.

IV. CONCLUSIONS

We derived a new contribution to parameter uncer-
tainties from the uncertainty in sample data covariance
matrices estimated from simulations. This error adds in
quadrature with other sources of parameter uncertainty
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FIG. 1: The coefficient B from Eq. (26) as a function of the
number of simulation realizations using the lensing two-point
correlation function (‘corr’) and power spectrum (‘power’)
from [18, 19] (with a delta-function source distribution at
z = 1). There are 1000 realizations of the simulated two-
point functions. We take the sample covariance using all 1000
simulations as a reference, and compare with the sample co-
variance using subsets of Ns simulations. The dashed black
line shows the prediction from Eq. (28) with Nb = 24. The
error bars indicate the standard error on B as a regression
coefficient fit simultaneously to the N2

b × N2
b components of

Cov(∆Ψ).

TABLE I: Increase in the variance of each parameter due to
covariance estimator errors for some recently published survey
analyses.

Survey Ns Nb Fractional Increase

in Variance

BOSS [20] 600 41 7%

DLS [21] 1000 60 6%

CHFTLens [22] 184 24 13%

and scales with the ratio of the number of data bins to
the number of simulation realizations.

Current surveys use hundreds of simulations, but even
this large number leads to an underestimate of parameter
uncertainties by ∼5-15%. Future surveys, which will be
sensitive enough to measure in hundreds of bins will re-
quire of order 104 simulation realizations (per cosmolog-
ical model) to prevent 5-10% degradation in the param-
eter uncertainties. Mitigation schemes such as shrink-
age estimators [23], emulators [17, 24], and large-scale
mode-resampling [25] will be important to reduce these
computational requirements to tractable levels.

When the covariance matrix varies with cosmology (as
is generally the case), there will be additional contribu-
tions to the covariance estimator error. We will derive
these contributions in future work, but expect them to
be sub-dominant to the primary result we present in this
paper as long as the model for the cosmology-dependent
covariance is accurate enough to ensure that the fluctua-
tions, ∆Ψ, in the covariance estimator are approximately
independent of cosmology.
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